
Why CBONS? Place Not Race!

- Systematic, long term (series) of observations using reproducible, standardized collection methods;
- Local science teams work as partners with Academic/Gov't science teams to form a SSC.
- Rigorous methods to co-identify and monitor meaningful indicators that can be used to guide adaptation and responses on the ground.

What is Community Based Observing?

Quality

Assured/Controlled Variables co-identified

(extensive);

Structured Data Intakes;

Data interoperable;

Mixed Methods;

On-going Verification

and Validation; Local

Science Team Leaders

QA/QC variable;

Variables co-

identified (fewer)

Semi to Structured

Data Intakes; V&V for protocols

variable; Individuals

QA/QC occurs less often;

Variables driven by

Scientists (usually single

to few); V&V for

protocols absent;

Individuals, usually a restricted "backyard"

J....

demographic.

Little to No QA/QC; Variables at Accessibility

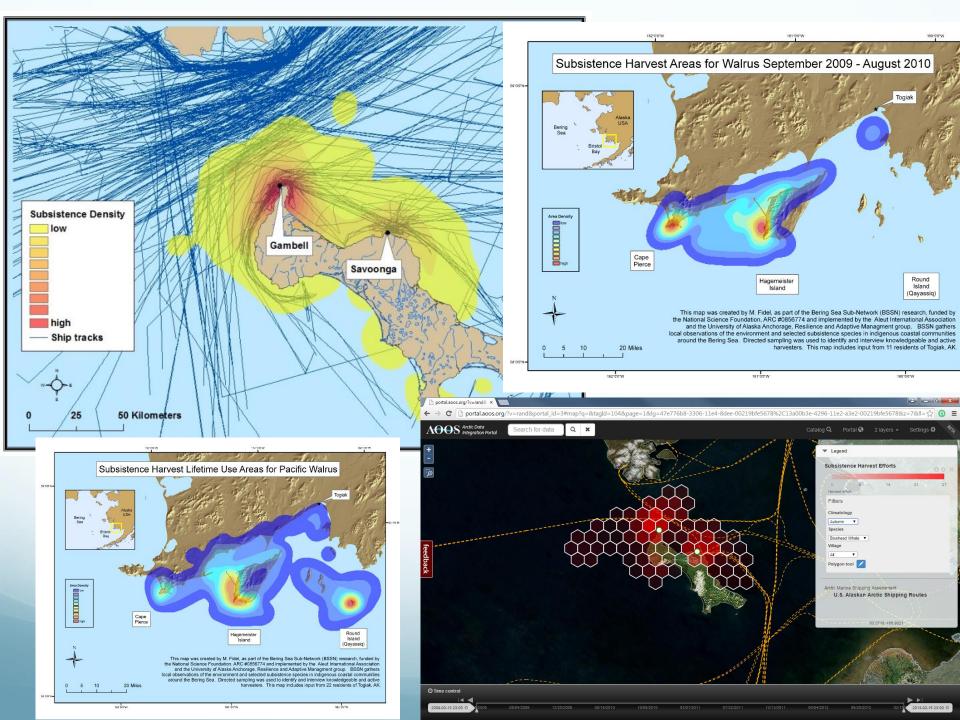
variables at random; V&V for

protocols absent;

open to anyone

with access.

CBONS


CBM

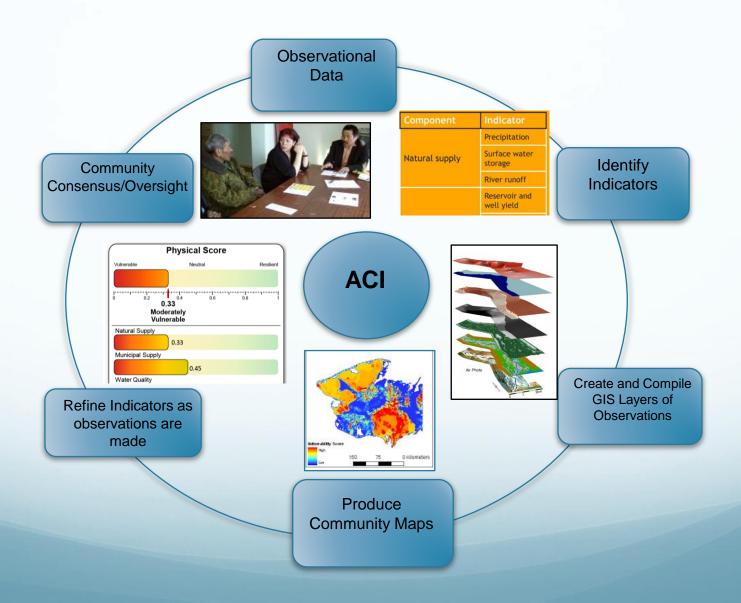
Citizen Science

Observer Blogs

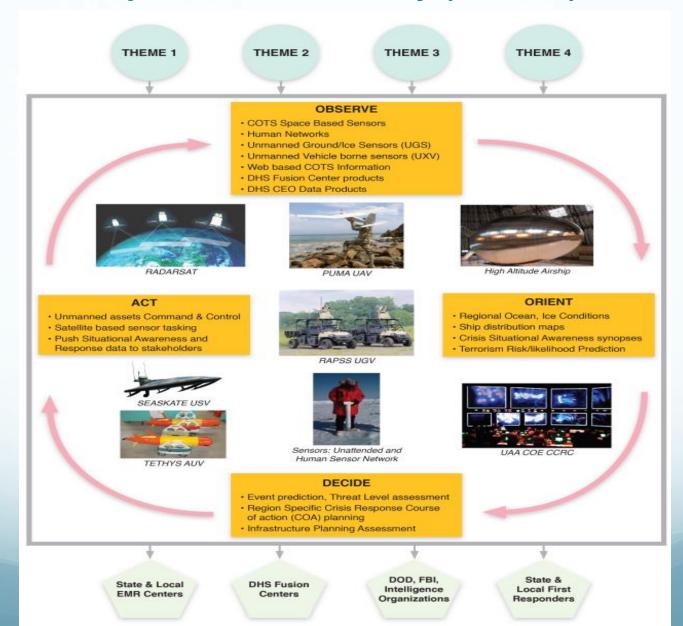
Building a Science of CBO

- Methods and outcomes from CBO and CBONS help us develop a Science of Community Based Observing;
- Allows us to better translate data to decisions, because context is powerful.
- White Paper proposing a permanent CBO sub-group within CON has advanced through the Arctic Executive Steering Committee (White House).
- Allows us to harmonize methods and hence, data interoperability across Nations while respecting local cultures and practices.

CBONS


- Enormous effort on "resilience" and "adaptation" but few tangible pathways to convert data to action.
- CBONS offer a systematic set of observations which are interoperable with other instrumented networks.
- CBONS allow information to be placed in a local and regional societal context. From this we can derive critical indicators.
- Indicators are a globally applied approach to guiding successful adaptation and avoiding harm.
- Indicators, in turn, help guide which variables are monitored at different scales.

What are we observing and why?


Indicators

- a) Metrics we can tangibly work with to guide actions on the ground on a day-to-day, month-to-month basis.
- b) That help constantly guide which variables we observe and why.
- c) That engage people on the ground not as merely "if you see something say something" but also as first responders.
- d) Indicators can be organized, weighted and analysed in partnership with communities on the ground using "adaptive capacity indices" (ACI).
- e) ACIs can, in turn, be developed into Early Warning Systems (EWS).

Observations, Indicators and Adaptive Capacity Indices

CBON-SA/Community Observing Network for Adaptation and Security (CONAS)

The role of Indigenous science and local knowledge in integrated observing systems: moving toward adaptive capacity indices and early warning systems

Lilian Alessa, Andrew Kliskey, James Gamble, Maryann Fidel, Grace Beaujean & James Gosz

Sustainability Science

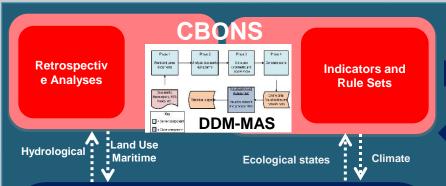
ISSN 1862-4065

Sustain Sci DOI 10.1007/s11625-015-0295-7

Indicators Tables for Arctic PACE (Predicting Arctic Critical Events)

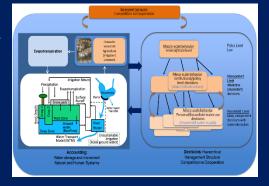
- Project within the DHS
 Arctic Domain Awareness
 Center (ADAC);
- Will drive the ADAC ISoS Decision Support Tool.
- Expansion to include Digital Data Mining (DDM) to build rule sets for human responses to environmental change (MAS).
- Part of DOD Long Range
 Research and Development
 Planning Process (LRRDPP)

Type of Sensor	Indicator	Sub Indices
Remote Sensing	Sea ice	Extent, velocity, quality, pattern
	Marine debris	Bulk, diffuse, rigid, unknown
	Roads, building, and ports	
	Shipping patterns (AIS visible)	Baseline, irregular, proximity to habitat
	Phytoplankton and marine algae	Variation from baseline, pattern, density, types
	Oil / petrochemicals	Location at unfamiliar places, density
	Wetland drying / surface drying	Rates
	Greening / browning (NDVI)	Rates, types of vegetation, proximity to habitat, cause
	Phenology	Increased uncoupling
	Ocean temperature	Higher, lower, phenologically disjunct
	Coastlines	Erosion (rates & patterns), proximity to habitat, proximity to infrastructure, sedimentation
Buoy / Meteorological Station	Ocean temperature	Higher, lower, phenologically disjunct
	Salinity	Higher, lower, pattern
	Microbes	TBD
	Oil / petrochemicals	Location at unfamiliar places, density
	Precipitation / hydrology	Increase, decrease, rate (e.g., drought/flood), proximity to infrastructure
	Phenology	Increased uncoupling
	Species distributions / biodiversity	TBD
Community-based Observing Networks	Sea State; Sea Ice; Marine transit inc. patterns (AIS – dark)	Patterns and Occurrence
	Fauna - familiar	Frequency, body condition (e.g., lesions), behaviors
	Fauna – unfamiliar	Occurrence, distribution
	Flora – familiar	Frequency, productivity (e.g., berries, rhizomes, roots), condition
	Flora –unfamiliar	Occurrence, distribution
	Phenology	Increased uncoupling
	Human activity – desired	TBD
	Coastlines	Erosion (rates & patterns), proximity to habitat, proximity to infrastructure, sedimentation


CBONS and Early Warning Systems

Aim

#



WBM-SWIM

Coupled:

Hydrologic Processes Human Responses Feedbacks

- Improvisation
- Resource Competition
- Trade-offs
- Conflict versus Cooperation

Micro-scale A Human **Behaviors**

Human

Macro-scale **Behaviors**

Agents

Infrastructure

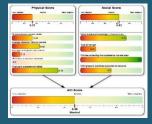
Policies

National Infrastructure (USACE Dataset)

FUTURES

Informed by Retrospective DDM

Climate Scenarios:


- 1) Historical (1979-2010)
- 2) Downscaled CMIP5 (2011-2100)
- 3) Resource supply futures
- Infrastructure for supply
- 5) Socioeconomic strategies

Changing Landscape **Scenarios:**

- 1. Drver West/Wetter East: Low Infrastructure: H/L Social Cooperation
- 2. Dryer West/Wetter East; High Infrastructure: H/L Social Cooperation
- 3. Grey and Black Swan Events

Model Outputs Refine Indicators

Biophysical and Hvdrological **Indicators** Weighted

Sociocultural and Economic **Indicators** Weighted

Aim #3

Conflict Cooperation Early Warning System (CCEWS) Prototyp

Augmented Adaptive Capacity Index

- 1) Web-based interactive indicators definition/exploration
- 2) Mapping of social ecological technological system hotspots
- 3) Direct engagement with strategic advisory group and other stakeholder/user groups.

AUTHOR'S PRE PUBLICATION COPY DO NOT DISTRIBUTE

INCORPORATING COMMUNITY-BASED OBSERVING NETWORKS AND SYSTEMS: TO ENHANCED COMMUNITY PREPAREDNESS AND RESPONSES TO MARINE ARCTIC CRITICAL EVENTS

Lilian Alessa, Arctic Domain Awareness Center
Paula Williams, Alaska Experimental Program to Stimulate Competitive Research
Andrew Kliskey, Center for Resilient Communities
Grace Beaujean, Aleut International Association

INTRODUCTION

II. WHY A SYSTEMS APPROACH?

Using Community Based Observing Networks to Better Enable Local Responses to Marine

Arctic Critical Events

III. FORECASTING MARINE ARCTIC CRITICAL EVENTS: WHAT IS A REGIONAL EARLY

WARNING SYSTEM?

Forecasting Marine Arctic Critical Events: An Arctic Early Warning System

MACE and Incidents of National Significance

IV. TOWARD AN INTEGRATED RESPONSE FRAMEWORK

Incorporating CBONS into the National Response Framework

INTRODUCTION

On May 10, 2013 President Barack Obama announced the National Strategy for the Arctic Region (NSAR)¹. The document describes foci of the policy, which include: improving our awareness of

HOME · BRIEFING ROOM · PRESIDENTIAL ACTIONS · EXECUTIVE ORDERS

Briefing Room

Your Weekly Address

Speeches & Remarks

Press Briefings

Statements & Releases

White House Schedule

Presidential Actions

Executive Orders

Presidential Memoranda

Proclamations

The White House

Office of the Press Secretary

For Immediate Release

September 15, 2015

Executive Order -- Using Behavioral Science Insights to Better Serve the American People

EXECUTIVE ORDER

A 10 YEAR OUTLOOK

A REPORT BY THE
NSF ADVISORY COMMITTEE
FOR ENVIRONMENTAL RESEARCH & EDUCATION

SPONSORED BY THE NATIONAL SCIENCE FOUNDATION SEPTEMBER 2015

TIC ATION NGE

HOME

BOUT US

EXPLORE

SHARE

CONNECT

NOVATE

Arctic Adaptation Exchange

Connecting individuals and organizations focused on the north to current and trusted information on climate change adaptation

Learn more with the Arctic Adaptation Exchange video

Share

Submit your resources to the Arctic Adaptation Exchange

Community

Global ideas to help solve local problems.

Practitioners

Information for public and private

Get Started Taking Action Tools Topics Expertise

Find Out How People Are Building Resilience

Watching for Wind (0:37)

Adapting to Climate Change: A Water Utility's Approach (1:27) Watch video >

Climate Outlooks Inform Water Management (0:53) Watch video >

Building Smart in the Floodplain (1:14) Watch video >

Climate Explorer

Site Overview

Featured

Arctic Adaptation Exchange
Share or access information about climate
adaptation across the Arctic region. Explore an
interactive map by theme and...

Read more >